
Tell us about your PDF experience.

Covariance and Contravariance (Visual
Basic)
Article • 10/04/2022

In Visual Basic, covariance and contravariance enable implicit reference conversion for
array types, delegate types, and generic type arguments. Covariance preserves
assignment compatibility and contravariance reverses it.

The following code demonstrates the difference between assignment compatibility,
covariance, and contravariance.

VB

Covariance for arrays enables implicit conversion of an array of a more derived type to
an array of a less derived type. But this operation isn't type safe, as shown in the
following code example.

VB

' Assignment compatibility.
Dim str As String = "test"
' An object of a more derived type is assigned to an object of a less
derived type.
Dim obj As Object = str

' Covariance.
Dim strings As IEnumerable(Of String) = New List(Of String)()
' An object that is instantiated with a more derived type argument
' is assigned to an object instantiated with a less derived type argument.
' Assignment compatibility is preserved.
Dim objects As IEnumerable(Of Object) = strings

' Contravariance.
' Assume that there is the following method in the class:
' Shared Sub SetObject(ByVal o As Object)
' End Sub
Dim actObject As Action(Of Object) = AddressOf SetObject

' An object that is instantiated with a less derived type argument
' is assigned to an object instantiated with a more derived type argument.
' Assignment compatibility is reversed.
Dim actString As Action(Of String) = actObject

Dim array() As Object = New String(10) {}
' The following statement produces a run-time exception.
' array(0) = 10

https://aka.ms/learn-pdf-feedback

Covariance and contravariance support for method groups allows for matching method
signatures with delegate types. This matching enables you to assign to a delegate not
only a method that has a matching signature, but also a method that:

Returns a more derived type (covariance) than the return type specified by the
delegate type.
Accepts parameters that have less derived types (contravariance) than those
specified by the delegate type.

For more information, see Variance in Delegates (Visual Basic) and Using Variance in
Delegates (Visual Basic).

The following code example shows covariance and contravariance support for method
groups.

VB

In .NET Framework 4 or later, Visual Basic supports covariance and contravariance in
generic interfaces and delegates and allows for implicit conversion of generic type
parameters. For more information, see Variance in Generic Interfaces (Visual Basic) and
Variance in Delegates (Visual Basic).

The following code example shows implicit reference conversion for generic interfaces.

Shared Function GetObject() As Object
 Return Nothing
End Function

Shared Sub SetObject(ByVal obj As Object)
End Sub

Shared Function GetString() As String
 Return ""
End Function

Shared Sub SetString(ByVal str As String)

End Sub

Shared Sub Test()
 ' Covariance. A delegate specifies a return type as object,
 ' but you can assign a method that returns a string.
 Dim del As Func(Of Object) = AddressOf GetString

 ' Contravariance. A delegate specifies a parameter type as string,
 ' but you can assign a method that takes an object.
 Dim del2 As Action(Of String) = AddressOf SetObject
End Sub

VB

A generic interface or delegate is called variant if its generic parameters are declared
covariant or contravariant. Visual Basic enables you to create your own variant interfaces
and delegates. For more information, see Creating Variant Generic Interfaces (Visual
Basic) and Variance in Delegates (Visual Basic).

Title Description

Variance in Generic
Interfaces (Visual Basic)

Discusses covariance and contravariance in generic interfaces and
provides a list of variant generic interfaces in the .NET Framework.

Creating Variant Generic
Interfaces (Visual Basic)

Shows how to create custom variant interfaces.

Using Variance in Interfaces
for Generic Collections
(Visual Basic)

Shows how covariance and contravariance support in the
IEnumerable<T> and IComparable<T> interfaces can help you
reuse code.

Variance in Delegates (Visual
Basic)

Discusses covariance and contravariance in generic and non-
generic delegates and provides a list of variant generic delegates
in the .NET Framework.

Using Variance in Delegates
(Visual Basic)

Shows how to use covariance and contravariance support in non-
generic delegates to match method signatures with delegate
types.

Using Variance for Func and
Action Generic Delegates
(Visual Basic)

Shows how covariance and contravariance support in the Func
and Action delegates can help you reuse code.

Dim strings As IEnumerable(Of String) = New List(Of String)
Dim objects As IEnumerable(Of Object) = strings

Related articles

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.icomparable-1

Variance in Generic Interfaces (Visual
Basic)
Article • 09/15/2021

.NET Framework 4 introduced variance support for several existing generic interfaces.
Variance support enables implicit conversion of classes that implement these interfaces.
The following interfaces are now variant:

IEnumerable<T> (T is covariant)

IEnumerator<T> (T is covariant)

IQueryable<T> (T is covariant)

IGrouping<TKey,TElement> (TKey and TElement are covariant)

IComparer<T> (T is contravariant)

IEqualityComparer<T> (T is contravariant)

IComparable<T> (T is contravariant)

Covariance permits a method to have a more derived return type than that defined by
the generic type parameter of the interface. To illustrate the covariance feature, consider
these generic interfaces: IEnumerable(Of Object) and IEnumerable(Of String) . The
IEnumerable(Of String) interface does not inherit the IEnumerable(Of Object) interface.
However, the String type does inherit the Object type, and in some cases you may
want to assign objects of these interfaces to each other. This is shown in the following
code example.

VB

In earlier versions of the .NET Framework, this code causes a compilation error in Visual
Basic with Option Strict On . But now you can use strings instead of objects , as
shown in the previous example, because the IEnumerable<T> interface is covariant.

Contravariance permits a method to have argument types that are less derived than that
specified by the generic parameter of the interface. To illustrate contravariance, assume
that you have created a BaseComparer class to compare instances of the BaseClass class.

Dim strings As IEnumerable(Of String) = New List(Of String)
Dim objects As IEnumerable(Of Object) = strings

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerator-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.igrouping-2
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.icomparer-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.iequalitycomparer-1
https://learn.microsoft.com/en-us/dotnet/api/system.icomparable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

The BaseComparer class implements the IEqualityComparer(Of BaseClass) interface.
Because the IEqualityComparer<T> interface is now contravariant, you can use
BaseComparer to compare instances of classes that inherit the BaseClass class. This is
shown in the following code example.

VB

For more examples, see Using Variance in Interfaces for Generic Collections (Visual
Basic).

Variance in generic interfaces is supported for reference types only. Value types do not
support variance. For example, IEnumerable(Of Integer) cannot be implicitly converted
to IEnumerable(Of Object) , because integers are represented by a value type.

VB

' Simple hierarchy of classes.
Class BaseClass
End Class

Class DerivedClass
 Inherits BaseClass
End Class

' Comparer class.
Class BaseComparer
 Implements IEqualityComparer(Of BaseClass)

 Public Function Equals1(ByVal x As BaseClass,
 ByVal y As BaseClass) As Boolean _
 Implements IEqualityComparer(Of
BaseClass).Equals
 Return (x.Equals(y))
 End Function

 Public Function GetHashCode1(ByVal obj As BaseClass) As Integer _
 Implements IEqualityComparer(Of BaseClass).GetHashCode
 Return obj.GetHashCode
 End Function
End Class
Sub Test()
 Dim baseComparer As IEqualityComparer(Of BaseClass) = New BaseComparer
 ' Implicit conversion of IEqualityComparer(Of BaseClass) to
 ' IEqualityComparer(Of DerivedClass).
 Dim childComparer As IEqualityComparer(Of DerivedClass) = baseComparer
End Sub

Dim integers As IEnumerable(Of Integer) = New List(Of Integer)
' The following statement generates a compiler error

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.iequalitycomparer-1

It is also important to remember that classes that implement variant interfaces are still
invariant. For example, although List<T> implements the covariant interface
IEnumerable<T>, you cannot implicitly convert List(Of Object) to List(Of String) .
This is illustrated in the following code example.

VB

Using Variance in Interfaces for Generic Collections (Visual Basic)
Creating Variant Generic Interfaces (Visual Basic)
Generic Interfaces
Variance in Delegates (Visual Basic)

' with Option Strict On, because Integer is a value type.
' Dim objects As IEnumerable(Of Object) = integers

' The following statement generates a compiler error
' because classes are invariant.
' Dim list As List(Of Object) = New List(Of String)

' You can use the interface object instead.
Dim listObjects As IEnumerable(Of Object) = New List(Of String)

See also

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/standard/generics/interfaces

Creating Variant Generic Interfaces
(Visual Basic)
Article • 11/05/2021

You can declare generic type parameters in interfaces as covariant or contravariant.
Covariance allows interface methods to have more derived return types than that
defined by the generic type parameters. Contravariance allows interface methods to
have argument types that are less derived than that specified by the generic parameters.
A generic interface that has covariant or contravariant generic type parameters is called
variant.

You can declare variant generic interfaces by using the in and out keywords for generic
type parameters.

You can declare a generic type parameter covariant by using the out keyword. The
covariant type must satisfy the following conditions:

The type is used only as a return type of interface methods and not used as a type
of method arguments. This is illustrated in the following example, in which the type
R is declared covariant.

VB

７ Note

.NET Framework 4 introduced variance support for several existing generic
interfaces. For the list of the variant interfaces in the .NET Framework, see Variance
in Generic Interfaces (Visual Basic).

Declaring Variant Generic Interfaces

） Important

ByRef parameters in Visual Basic cannot be variant. Value types also do not support
variance.

Interface ICovariant(Of Out R)
 Function GetSomething() As R
 ' The following statement generates a compiler error.

There is one exception to this rule. If you have a contravariant generic delegate as
a method parameter, you can use the type as a generic type parameter for the
delegate. This is illustrated by the type R in the following example. For more
information, see Variance in Delegates (Visual Basic) and Using Variance for Func
and Action Generic Delegates (Visual Basic).

VB

The type is not used as a generic constraint for the interface methods. This is
illustrated in the following code.

VB

You can declare a generic type parameter contravariant by using the in keyword. The
contravariant type can be used only as a type of method arguments and not as a return
type of interface methods. The contravariant type can also be used for generic
constraints. The following code shows how to declare a contravariant interface and use a
generic constraint for one of its methods.

VB

It is also possible to support both covariance and contravariance in the same interface,
but for different type parameters, as shown in the following code example.

 ' Sub SetSomething(ByVal sampleArg As R)
End Interface

Interface ICovariant(Of Out R)
 Sub DoSomething(ByVal callback As Action(Of R))
End Interface

Interface ICovariant(Of Out R)
 ' The following statement generates a compiler error
 ' because you can use only contravariant or invariant types
 ' in generic constraints.
 ' Sub DoSomething(Of T As R)()
End Interface

Interface IContravariant(Of In A)
 Sub SetSomething(ByVal sampleArg As A)
 Sub DoSomething(Of T As A)()
 ' The following statement generates a compiler error.
 ' Function GetSomething() As A
End Interface

VB

In Visual Basic, you can't declare events in variant interfaces without specifying the
delegate type. Also, a variant interface can't have nested classes, enums, or structures,
but it can have nested interfaces. This is illustrated in the following code.

VB

You implement variant generic interfaces in classes by using the same syntax that is
used for invariant interfaces. The following code example shows how to implement a
covariant interface in a generic class.

VB

Interface IVariant(Of Out R, In A)
 Function GetSomething() As R
 Sub SetSomething(ByVal sampleArg As A)
 Function GetSetSomething(ByVal sampleArg As A) As R
End Interface

Interface ICovariant(Of Out R)
 ' The following statement generates a compiler error.
 ' Event SampleEvent()
 ' The following statement specifies the delegate type and
 ' does not generate an error.
 Event AnotherEvent As EventHandler

 ' The following statements generate compiler errors,
 ' because a variant interface cannot have
 ' nested enums, classes, or structures.

 'Enum SampleEnum : test : End Enum
 'Class SampleClass : End Class
 'Structure SampleStructure : Dim value As Integer : End Structure

 ' Variant interfaces can have nested interfaces.
 Interface INested : End Interface
End Interface

Implementing Variant Generic Interfaces

Interface ICovariant(Of Out R)
 Function GetSomething() As R
End Interface

Class SampleImplementation(Of R)
 Implements ICovariant(Of R)
 Public Function GetSomething() As R _

Classes that implement variant interfaces are invariant. For example, consider the
following code.

VB

When you extend a variant generic interface, you have to use the in and out keywords
to explicitly specify whether the derived interface supports variance. The compiler does
not infer the variance from the interface that is being extended. For example, consider
the following interfaces.

VB

In the Invariant(Of T) interface, the generic type parameter T is invariant, whereas in
IExtCovariant (Of Out T) the type parameter is covariant, although both interfaces
extend the same interface. The same rule is applied to contravariant generic type
parameters.

 Implements ICovariant(Of R).GetSomething
 ' Some code.
 End Function
End Class

 The interface is covariant.
Dim ibutton As ICovariant(Of Button) =
 New SampleImplementation(Of Button)
Dim iobj As ICovariant(Of Object) = ibutton

' The class is invariant.
Dim button As SampleImplementation(Of Button) =
 New SampleImplementation(Of Button)
' The following statement generates a compiler error
' because classes are invariant.
' Dim obj As SampleImplementation(Of Object) = button

Extending Variant Generic Interfaces

Interface ICovariant(Of Out T)
End Interface

Interface IInvariant(Of T)
 Inherits ICovariant(Of T)
End Interface

Interface IExtCovariant(Of Out T)
 Inherits ICovariant(Of T)
End Interface

You can create an interface that extends both the interface where the generic type
parameter T is covariant and the interface where it is contravariant if in the extending
interface the generic type parameter T is invariant. This is illustrated in the following
code example.

VB

However, if a generic type parameter T is declared covariant in one interface, you
cannot declare it contravariant in the extending interface, or vice versa. This is illustrated
in the following code example.

VB

When you implement variant generic interfaces, variance can sometimes lead to
ambiguity. This should be avoided.

For example, if you explicitly implement the same variant generic interface with different
generic type parameters in one class, it can create ambiguity. The compiler does not
produce an error in this case, but it is not specified which interface implementation will
be chosen at run time. This could lead to subtle bugs in your code. Consider the
following code example.

Interface ICovariant(Of Out T)
End Interface

Interface IContravariant(Of In T)
End Interface

Interface IInvariant(Of T)
 Inherits ICovariant(Of T), IContravariant(Of T)
End Interface

Interface ICovariant(Of Out T)
End Interface

' The following statements generate a compiler error.
' Interface ICoContraVariant(Of In T)
' Inherits ICovariant(Of T)
' End Interface

Avoiding Ambiguity

７ Note

VB

In this example, it is unspecified how the pets.GetEnumerator method chooses between
Cat and Dog . This could cause problems in your code.

With Option Strict Off , Visual Basic generates a compiler warning when there is
an ambiguous interface implementation. With Option Strict On , Visual Basic
generates a compiler error.

' Simple class hierarchy.
Class Animal
End Class

Class Cat
 Inherits Animal
End Class

Class Dog
 Inherits Animal
End Class

' This class introduces ambiguity
' because IEnumerable(Of Out T) is covariant.
Class Pets
 Implements IEnumerable(Of Cat), IEnumerable(Of Dog)

 Public Function GetEnumerator() As IEnumerator(Of Cat) _
 Implements IEnumerable(Of Cat).GetEnumerator
 Console.WriteLine("Cat")
 ' Some code.
 End Function

 Public Function GetEnumerator1() As IEnumerator(Of Dog) _
 Implements IEnumerable(Of Dog).GetEnumerator
 Console.WriteLine("Dog")
 ' Some code.
 End Function

 Public Function GetEnumerator2() As IEnumerator _
 Implements IEnumerable.GetEnumerator
 ' Some code.
 End Function
End Class

Sub Main()
 Dim pets As IEnumerable(Of Animal) = New Pets()
 pets.GetEnumerator()
End Sub

Variance in Generic Interfaces (Visual Basic)
Using Variance for Func and Action Generic Delegates (Visual Basic)

See also

Using Variance in Interfaces for Generic
Collections (Visual Basic)
Article • 09/15/2021

A covariant interface allows its methods to return more derived types than those
specified in the interface. A contravariant interface allows its methods to accept
parameters of less derived types than those specified in the interface.

In .NET Framework 4, several existing interfaces became covariant and contravariant.
These include IEnumerable<T> and IComparable<T>. This enables you to reuse
methods that operate with generic collections of base types for collections of derived
types.

For a list of variant interfaces in the .NET Framework, see Variance in Generic Interfaces
(Visual Basic).

The following example illustrates the benefits of covariance support in the
IEnumerable<T> interface. The PrintFullName method accepts a collection of the
IEnumerable(Of Person) type as a parameter. However, you can reuse it for a collection
of the IEnumerable(Of Person) type because Employee inherits Person .

VB

Converting Generic Collections

' Simple hierarchy of classes.
Public Class Person
 Public Property FirstName As String
 Public Property LastName As String
End Class

Public Class Employee
 Inherits Person
End Class

' The method has a parameter of the IEnumerable(Of Person) type.
Public Sub PrintFullName(ByVal persons As IEnumerable(Of Person))
 For Each person As Person In persons
 Console.WriteLine(
 "Name: " & person.FirstName & " " & person.LastName)
 Next
End Sub

Sub Main()
 Dim employees As IEnumerable(Of Employee) = New List(Of Employee)

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.icomparable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

The following example illustrates the benefits of contravariance support in the
IComparer<T> interface. The PersonComparer class implements the IComparer(Of
Person) interface. However, you can reuse this class to compare a sequence of objects
of the Employee type because Employee inherits Person .

VB

 ' You can pass IEnumerable(Of Employee),
 ' although the method expects IEnumerable(Of Person).

 PrintFullName(employees)

End Sub

Comparing Generic Collections

' Simple hierarchy of classes.
Public Class Person
 Public Property FirstName As String
 Public Property LastName As String
End Class

Public Class Employee
 Inherits Person
End Class
' The custom comparer for the Person type
' with standard implementations of Equals()
' and GetHashCode() methods.
Class PersonComparer
 Implements IEqualityComparer(Of Person)

 Public Function Equals1(
 ByVal x As Person,
 ByVal y As Person) As Boolean _
 Implements IEqualityComparer(Of Person).Equals

 If x Is y Then Return True
 If x Is Nothing OrElse y Is Nothing Then Return False
 Return (x.FirstName = y.FirstName) AndAlso
 (x.LastName = y.LastName)
 End Function
 Public Function GetHashCode1(
 ByVal person As Person) As Integer _
 Implements IEqualityComparer(Of Person).GetHashCode

 If person Is Nothing Then Return 0
 Dim hashFirstName =
 If(person.FirstName Is Nothing,
 0, person.FirstName.GetHashCode())

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.icomparer-1

Variance in Generic Interfaces (Visual Basic)

 Dim hashLastName = person.LastName.GetHashCode()
 Return hashFirstName Xor hashLastName
 End Function
End Class

Sub Main()
 Dim employees = New List(Of Employee) From {
 New Employee With {.FirstName = "Michael", .LastName = "Alexander"},
 New Employee With {.FirstName = "Jeff", .LastName = "Price"}
 }

 ' You can pass PersonComparer,
 ' which implements IEqualityComparer(Of Person),
 ' although the method expects IEqualityComparer(Of Employee)

 Dim noduplicates As IEnumerable(Of Employee) = employees.Distinct(New
PersonComparer())

 For Each employee In noduplicates
 Console.WriteLine(employee.FirstName & " " & employee.LastName)
 Next
End Sub

See also

Variance in Delegates (Visual Basic)
Article • 09/15/2021

.NET Framework 3.5 introduced variance support for matching method signatures with
delegate types in all delegates in C# and Visual Basic. This means that you can assign to
delegates not only methods that have matching signatures, but also methods that
return more derived types (covariance) or that accept parameters that have less derived
types (contravariance) than that specified by the delegate type. This includes both
generic and non-generic delegates.

For example, consider the following code, which has two classes and two delegates:
generic and non-generic.

VB

When you create delegates of the SampleDelegate or SampleDelegate(Of A, R) types,
you can assign any one of the following methods to those delegates.

VB

Public Class First
End Class

Public Class Second
 Inherits First
End Class

Public Delegate Function SampleDelegate(ByVal a As Second) As First
Public Delegate Function SampleGenericDelegate(Of A, R)(ByVal a As A) As R

' Matching signature.
Public Shared Function ASecondRFirst(
 ByVal second As Second) As First
 Return New First()
End Function

' The return type is more derived.
Public Shared Function ASecondRSecond(
 ByVal second As Second) As Second
 Return New Second()
End Function

' The argument type is less derived.
Public Shared Function AFirstRFirst(
 ByVal first As First) As First
 Return New First()
End Function

The following code example illustrates the implicit conversion between the method
signature and the delegate type.

VB

For more examples, see Using Variance in Delegates (Visual Basic) and Using Variance
for Func and Action Generic Delegates (Visual Basic).

In .NET Framework 4 and later you can enable implicit conversion between delegates, so
that generic delegates that have different types specified by generic type parameters
can be assigned to each other, if the types are inherited from each other as required by
variance.

To enable implicit conversion, you must explicitly declare generic parameters in a
delegate as covariant or contravariant by using the in or out keyword.

The following code example shows how you can create a delegate that has a covariant
generic type parameter.

' The return type is more derived
' and the argument type is less derived.
Public Shared Function AFirstRSecond(
 ByVal first As First) As Second
 Return New Second()
End Function

' Assigning a method with a matching signature
' to a non-generic delegate. No conversion is necessary.
Dim dNonGeneric As SampleDelegate = AddressOf ASecondRFirst
' Assigning a method with a more derived return type
' and less derived argument type to a non-generic delegate.
' The implicit conversion is used.
Dim dNonGenericConversion As SampleDelegate = AddressOf AFirstRSecond

' Assigning a method with a matching signature to a generic delegate.
' No conversion is necessary.
Dim dGeneric As SampleGenericDelegate(Of Second, First) = AddressOf
ASecondRFirst
' Assigning a method with a more derived return type
' and less derived argument type to a generic delegate.
' The implicit conversion is used.
Dim dGenericConversion As SampleGenericDelegate(Of Second, First) =
AddressOf AFirstRSecond

Variance in Generic Type Parameters

VB

If you use only variance support to match method signatures with delegate types and
do not use the in and out keywords, you may find that sometimes you can instantiate
delegates with identical lambda expressions or methods, but you cannot assign one
delegate to another.

In the following code example, SampleGenericDelegate(Of String) can't be explicitly
converted to SampleGenericDelegate(Of Object) , although String inherits Object . You
can fix this problem by marking the generic parameter T with the out keyword.

VB

.NET Framework 4 introduced variance support for generic type parameters in several
existing generic delegates:

Action delegates from the System namespace, for example, Action<T> and
Action<T1,T2>

' Type T is declared covariant by using the out keyword.
Public Delegate Function SampleGenericDelegate(Of Out T)() As T
Sub Test()
 Dim dString As SampleGenericDelegate(Of String) = Function() " "
 ' You can assign delegates to each other,
 ' because the type T is declared covariant.
 Dim dObject As SampleGenericDelegate(Of Object) = dString
End Sub

Public Delegate Function SampleGenericDelegate(Of T)() As T
Sub Test()
 Dim dString As SampleGenericDelegate(Of String) = Function() " "

 ' You can assign the dObject delegate
 ' to the same lambda expression as dString delegate
 ' because of the variance support for
 ' matching method signatures with delegate types.
 Dim dObject As SampleGenericDelegate(Of Object) = Function() " "

 ' The following statement generates a compiler error
 ' because the generic type T is not marked as covariant.
 ' Dim dObject As SampleGenericDelegate(Of Object) = dString

End Sub

Generic Delegates That Have Variant Type Parameters in
the .NET Framework

https://learn.microsoft.com/en-us/dotnet/api/system
https://learn.microsoft.com/en-us/dotnet/api/system.action-1
https://learn.microsoft.com/en-us/dotnet/api/system.action-2

Func delegates from the System namespace, for example, Func<TResult> and
Func<T,TResult>

The Predicate<T> delegate

The Comparison<T> delegate

The Converter<TInput,TOutput> delegate

For more information and examples, see Using Variance for Func and Action Generic
Delegates (Visual Basic).

If a generic delegate has covariant or contravariant generic type parameters, it can be
referred to as a variant generic delegate.

You can declare a generic type parameter covariant in a generic delegate by using the
out keyword. The covariant type can be used only as a method return type and not as a
type of method arguments. The following code example shows how to declare a
covariant generic delegate.

VB

You can declare a generic type parameter contravariant in a generic delegate by using
the in keyword. The contravariant type can be used only as a type of method
arguments and not as a method return type. The following code example shows how to
declare a contravariant generic delegate.

VB

It is also possible to support both variance and covariance in the same delegate, but for
different type parameters. This is shown in the following example.

Declaring Variant Type Parameters in Generic Delegates

Public Delegate Function DCovariant(Of Out R)() As R

Public Delegate Sub DContravariant(Of In A)(ByVal a As A)

） Important

ByRef parameters in Visual Basic can't be marked as variant.

https://learn.microsoft.com/en-us/dotnet/api/system
https://learn.microsoft.com/en-us/dotnet/api/system.func-1
https://learn.microsoft.com/en-us/dotnet/api/system.func-2
https://learn.microsoft.com/en-us/dotnet/api/system.predicate-1
https://learn.microsoft.com/en-us/dotnet/api/system.comparison-1
https://learn.microsoft.com/en-us/dotnet/api/system.converter-2

VB

You can instantiate and invoke variant delegates just as you instantiate and invoke
invariant delegates. In the following example, the delegate is instantiated by a lambda
expression.

VB

You should not combine variant delegates. The Combine method does not support
variant delegate conversion and expects delegates to be of exactly the same type. This
can lead to a run-time exception when you combine delegates either by using the
Combine method (in C# and Visual Basic) or by using the + operator (in C#), as shown
in the following code example.

VB

Variance for generic type parameters is supported for reference types only. For example,
DVariant(Of Int)can't be implicitly converted to DVariant(Of Object) or DVariant(Of
Long) , because integer is a value type.

The following example demonstrates that variance in generic type parameters is not
supported for value types.

Public Delegate Function DVariant(Of In A, Out R)(ByVal a As A) As R

Instantiating and Invoking Variant Generic Delegates

Dim dvariant As DVariant(Of String, String) = Function(str) str + " "
dvariant("test")

Combining Variant Generic Delegates

Dim actObj As Action(Of Object) = Sub(x) Console.WriteLine("object: {0}", x)
Dim actStr As Action(Of String) = Sub(x) Console.WriteLine("string: {0}", x)

' The following statement throws an exception at run time.
' Dim actCombine = [Delegate].Combine(actStr, actObj)

Variance in Generic Type Parameters for Value
and Reference Types

https://learn.microsoft.com/en-us/dotnet/api/system.delegate.combine
https://learn.microsoft.com/en-us/dotnet/api/system.delegate.combine

VB

Relaxed delegate conversion enables more flexibility in matching method signatures
with delegate types. For example, it lets you omit parameter specifications and omit
function return values when you assign a method to a delegate. For more information,
see Relaxed Delegate Conversion.

Generics
Using Variance for Func and Action Generic Delegates (Visual Basic)

' The type T is covariant.
Public Delegate Function DVariant(Of Out T)() As T
' The type T is invariant.
Public Delegate Function DInvariant(Of T)() As T
Sub Test()
 Dim i As Integer = 0
 Dim dInt As DInvariant(Of Integer) = Function() i
 Dim dVariantInt As DVariant(Of Integer) = Function() i

 ' All of the following statements generate a compiler error
 ' because type variance in generic parameters is not supported
 ' for value types, even if generic type parameters are declared variant.
 ' Dim dObject As DInvariant(Of Object) = dInt
 ' Dim dLong As DInvariant(Of Long) = dInt
 ' Dim dVariantObject As DInvariant(Of Object) = dInt
 ' Dim dVariantLong As DInvariant(Of Long) = dInt
End Sub

Relaxed Delegate Conversion in Visual Basic

See also

https://learn.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/delegates/relaxed-delegate-conversion
https://learn.microsoft.com/en-us/dotnet/standard/generics/

Using Variance in Delegates (Visual
Basic)
Article • 09/15/2021

When you assign a method to a delegate, covariance and contravariance provide
flexibility for matching a delegate type with a method signature. Covariance permits a
method to have return type that is more derived than that defined in the delegate.
Contravariance permits a method that has parameter types that are less derived than
those in the delegate type.

This example demonstrates how delegates can be used with methods that have return
types that are derived from the return type in the delegate signature. The data type
returned by DogsHandler is of type Dogs , which derives from the Mammals type that is
defined in the delegate.

VB

Example 1: Covariance

Description

Code

Class Mammals
End Class

Class Dogs
 Inherits Mammals
End Class
Class Test
 Public Delegate Function HandlerMethod() As Mammals
 Public Shared Function MammalsHandler() As Mammals
 Return Nothing
 End Function
 Public Shared Function DogsHandler() As Dogs
 Return Nothing
 End Function
 Sub Test()
 Dim handlerMammals As HandlerMethod = AddressOf MammalsHandler
 ' Covariance enables this assignment.
 Dim handlerDogs As HandlerMethod = AddressOf DogsHandler
 End Sub
End Class

This example demonstrates how delegates can be used with methods that have
parameters whose types are base types of the delegate signature parameter type. With
contravariance, you can use one event handler instead of separate handlers. The
following example makes use of two delegates:

A KeyEventHandler delegate that defines the signature of the Button.KeyDown
event. Its signature is:

VB

A MouseEventHandler delegate that defines the signature of the
Button.MouseClick event. Its signature is:

VB

The example defines an event handler with an EventArgs parameter and uses it to
handle both the Button.KeyDown and Button.MouseClick events. It can do this because
EventArgs is a base type of both KeyEventArgs and MouseEventArgs.

VB

Example 2: Contravariance

Description

Public Delegate Sub KeyEventHandler(sender As Object, e As
KeyEventArgs)

Public Delegate Sub MouseEventHandler(sender As Object, e As
MouseEventArgs)

Code

' Event handler that accepts a parameter of the EventArgs type.
Private Sub MultiHandler(ByVal sender As Object,
 ByVal e As System.EventArgs)
 Label1.Text = DateTime.Now
End Sub

Private Sub Form1_Load(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles MyBase.Load

 ' You can use a method that has an EventArgs parameter,

https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.keyeventhandler
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keydown
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.mouseeventhandler
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousedown
https://learn.microsoft.com/en-us/dotnet/api/system.eventargs
https://learn.microsoft.com/en-us/dotnet/api/system.eventargs
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.keyeventargs
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.mouseeventargs

Variance in Delegates (Visual Basic)
Using Variance for Func and Action Generic Delegates (Visual Basic)

 ' although the event expects the KeyEventArgs parameter.
 AddHandler Button1.KeyDown, AddressOf MultiHandler

 ' You can use the same method
 ' for the event that expects the MouseEventArgs parameter.
 AddHandler Button1.MouseClick, AddressOf MultiHandler
End Sub

See also

Using Variance for Func and Action
Generic Delegates (Visual Basic)
Article • 09/15/2021

These examples demonstrate how to use covariance and contravariance in the Func and
Action generic delegates to enable reuse of methods and provide more flexibility in
your code.

For more information about covariance and contravariance, see Variance in Delegates
(Visual Basic).

The following example illustrates the benefits of covariance support in the generic Func
delegates. The FindByTitle method takes a parameter of the String type and returns
an object of the Employee type. However, you can assign this method to the Func(Of
String, Person) delegate because Employee inherits Person .

VB

Using Delegates with Covariant Type
Parameters

' Simple hierarchy of classes.
Public Class Person
End Class

Public Class Employee
 Inherits Person
End Class

Class Finder
 Public Shared Function FindByTitle(
 ByVal title As String) As Employee
 ' This is a stub for a method that returns
 ' an employee that has the specified title.
 Return New Employee
 End Function

 Sub Test()
 ' Create an instance of the delegate without using variance.
 Dim findEmployee As Func(Of String, Employee) =
 AddressOf FindByTitle

 ' The delegate expects a method to return Person,
 ' but you can assign it a method that returns Employee.
 Dim findPerson As Func(Of String, Person) =

The following example illustrates the benefits of contravariance support in the generic
Action delegates. The AddToContacts method takes a parameter of the Person type.
However, you can assign this method to the Action(Of Employee) delegate because
Employee inherits Person .

VB

 AddressOf FindByTitle

 ' You can also assign a delegate
 ' that returns a more derived type to a delegate
 ' that returns a less derived type.
 findPerson = findEmployee
 End Sub
End Class

Using Delegates with Contravariant Type
Parameters

Public Class Person
End Class

Public Class Employee
 Inherits Person
End Class

Class AddressBook
 Shared Sub AddToContacts(ByVal person As Person)
 ' This method adds a Person object
 ' to a contact list.
 End Sub

 Sub Test()
 ' Create an instance of the delegate without using variance.
 Dim addPersonToContacts As Action(Of Person) =
 AddressOf AddToContacts

 ' The Action delegate expects
 ' a method that has an Employee parameter,
 ' but you can assign it a method that has a Person parameter
 ' because Employee derives from Person.
 Dim addEmployeeToContacts As Action(Of Employee) =
 AddressOf AddToContacts

 ' You can also assign a delegate
 ' that accepts a less derived parameter
 ' to a delegate that accepts a more derived parameter.
 addEmployeeToContacts = addPersonToContacts

Covariance and Contravariance (Visual Basic)
Generics

 End Sub
End Class

See also

https://learn.microsoft.com/en-us/dotnet/standard/generics/

	Covariance and Contravariance
	Variance in Generic Interfaces
	Creating Variant Generic Interfaces
	Using Variance in Interfaces for Generic Collections

	Variance in Delegates
	Using Variance in Delegates
	Using Variance for Func and Action Generic Delegates

